Faculty & Research
Name
Research Areas
Contact
-
Tami Lieberman
Associate Professor, Civil and Environmental Engineering617-258-6670Short Bio
Tami Lieberman joined the MIT faculty in January 2018. She leads a computational and experimental research group focused on uncovering the principles governing colonization, niche range, and personalization in the human microbiome.
Tami trained in molecular biology and mathematics at Northwestern University, where she conducted research in the laboratory of Jon Widom and was funded by a Barry M. Goldwater Scholarship. She then earned a PhD in Systems Biology from Harvard University, where she conducted research in Roy Kishony’s laboratory. During her graduate research, Tami developed new genomic approaches for understanding how bacteria evolve during infections of individual people. As a postdoc in Eric Alm’s lab at MIT, she further developed and applied these genomic approaches to understand the microbes that colonize us during health. Tami has also made contributions to our understanding of antibiotic resistance, including the co-invention of a new platform for visualizing evolution in real time. Her work has been covered in the popular press, including online coverage from The Atlantic, The Wall Street Journal, National Geographic, The Boston Globe, and ArsTechnia.
-
Gene-Wei Li
Associate Professor of Biology617-324-6703Short Bio
Gene-Wei Li investigates how quantitative information regarding precise proteome composition is encoded in and extracted from bacterial genomes. We seek to understand the optimization of bacterial proteomes at both mechanistic and systems levels. Our work combines high-precision assays, genome-wide measurements, and quantitative/biophysical modeling. Ongoing projects focus on the design principles of transcription, translation, and RNA maturation machineries in the face of competing cellular processes.
-
Michael Laub
Associate Professor of Biology; Investigator, Howard Hughes Medical InstituteShort Bio
Our lab is currently interested in: (1) understanding how toxin-antitoxin systems and other immunity mechanisms help bacteria defend themselves against phage predation and (2) elucidating the molecular basis of protein evolution and the coevolution of interacting proteins. We use a combination of genetics, biochemistry, microscopy, computational analyses, and genome-scale approaches like RNA-seq. Our work is rooted in a desire to develop a deep, fundamental understanding of how bacteria function and evolve, but it also has implications for and applications in areas such as protein engineering and phage therapy.
-
Becky Lamason
Associate Professor of Biology617-258-6155Short Bio
In the Lamason lab, we investigate how intracellular bacterial pathogens such as Rickettsia parkeri and Listeria monocytogenes hijack host cell processes to promote infection. We use cellular, molecular, genetic, biochemical, and biophysical approaches to elucidate the mechanisms of host-pathogen interactions in order to reveal key insights into pathogenesis and host cell biology.
-
Laura L. Kiessling
Novartis Professor of Chemistry617-258-8567Short Bio
Professor Kiessling received an Sc.B. degree in chemistry at MIT, where she performed undergraduate research in organic synthesis with Professor Bill Roush. She received a Ph.D. degree in chemistry at Yale University for her research with Stuart L. Schreiber. She was an American Cancer Society postdoctoral fellow with Peter B. Dervan at California Institute of Technology. She then joined the faculty at the University of Wisconsin–Madison, where she became the Steenbock Professor of Chemistry, the Laurens Anderson Professor of Biochemistry, and the Director of the Keck Center for Chemical Genomics. In 2017, she returned to MIT as the Novartis Professor of Chemistry.
Professor Kiessling is a member of the American Academy of Arts & Sciences, the American Academy of Microbiology, the American Philosophical Society, and National Academy of Sciences. She is the founding Editor-In-Chief of the journal ACS Chemical Biology . She is an author of over 140 peer-reviewed journal articles, and an inventor on more than 28 US patents. She has advised approximately 100 graduate students and postdoctorates. Alumni from her research group are contributing through their positions as faculty members of distinguished research universities, medical schools, and colleges and as research scientists at innovative start-up companies, leading corporations, and government laboratories.
-
Alan D. Grossman
Praecis Professor of BiologyShort Bio
Professor Alan Grossman is no longer accepting graduate students.
We use a variety of approaches to investigate several of the fundamental and conserved processes used by bacteria for propagation and growth, adaptation to stresses, and acquisition of new genes and traits via horizontal gene transfer. Our long term goals are to understand many of the molecular mechanisms and regulation underlying basic cellular processes in bacteria. Our organism of choice for these studies is usually the Gram positive bacterium Bacillus subtilis. Our current efforts are focused in two important areas of biology: 1) The control of horizontal gene transfer, specifically the lifecycle, function, and control of integrative and conjugative elements (ICEs). These elements are widespread in bacteria and contribute greatly to the spread of antibiotic resistances between organisms. 2) Regulation of the initiation of DNA replication and the connections between replication and gene expression, with particular focus on the conserved replication initiator and transcription factor DnaA. This work is directly related to mechanisms controlling bacterial growth, survival, and stress responses.
-
Jeff Gore
Latham Family Career Development Associate Professor of PhysicsShort Bio
Jeff’s research interests have ranged widely, from the current focus on ecological dynamics to his single-molecule research in graduate school with the Bustamante laboratory. Before starting his own lab, Jeff was a Pappalardo Fellow in the Physics Department at MIT working with the van Oudenaarden laboratory studying cooperation and cheating in yeast.
Jeff’s honors include a Schmidt Science Polymath Award, NIH New Innovator Award, NIH K99/R00 Pathways to Independence Award, and an NSF CAREER Award. In addition, Jeff is a Pew Scholar in the Biomedical Sciences, Sloan Research Fellow, and an Allen Distinguished Investigator. He has also been recognized at MIT for his efforts in teaching and mentoring; in 2011 he was chosen as the MIT-wide undergraduate research (UROP) mentor of the year and in 2013 he received the Buechner Teaching Award from the Physics Department.
-
Ariel Furst
Raymond (1921) & Helen St. Laurent Career Development Professor of Chemical Engineering617-253-4677Short Bio
Ariel L. Furst received a B.S. degree in Chemistry from the University of Chicago working with Prof. Stephen B. H. Kent on the chemical synthesis of proteins. She then completed her Ph.D. in the lab of Prof. Jacqueline K. Barton at the California Institute of Technology developing new cancer diagnostic strategies based on DNA charge transport. She was then an A. O. Beckman Postdoctoral Fellow in the lab of Prof. Matthew Francis at the University of California, Berkeley. She is now an assistant professor in the Chemical Engineering Department at MIT. She is passionate about STEM outreach and increasing participation of underrepresented groups in engineering.
-
Gregory Fournier
Associate Professor of Earth, Atmospheric & Planetary Science617-324-6164Short Bio
Greg Fournier is an expert in molecular phylogenetics and microbial evolution. His research investigates the geobiological context for the complex evolutionary histories of genes involved in “horizontal gene transfer” or HGT, the early evolution of microbial systems and metabolisms, and how these processes have shaped the biogeochemistry and habitability of the planet.
His research accomplishments span many eras of Earth’s history, including the identification of the HGT origin of new methane-producing metabolisms at a time closely linked with the Permian-Triassic mass extinction, discovering gene histories showing oxygen-dependent sterol biosynthesis evolved in the ancestors of eukaryotes over 2 billion years ago, and developing new HGT-based approaches for dating the origin of microbial groups and metabolisms, including methanogenesis and oxygenic photosynthesis. His current work focuses on expanding HGT-based molecular clocks to obtain a comprehensive, precise dating of the microbial Tree of Life, as well as focused studies on the evolution of major groups of cyanobacteria, green sulfur bacteria, and microbes involved in the nitrogen cycle and the consumption of animal-derived organic materials.
-
Kevin Esvelt
Leader, Sculpting Evolution Group; Assistant Professor, Media LabShort Bio
Kevin M. Esvelt is an associate professor at the MIT Media Lab, where he leads the Sculpting Evolution Group in advancing biotechnology safely.
He received his Ph.D. from Harvard University for inventing a synthetic microbial ecosystem to rapidly evolve useful biomolecules, and subsequently helped pioneer the development of CRISPR, a powerful new method of genome engineering.
In 2013, Esvelt was the first to identify the potential for CRISPR “gene drive” systems to alter wild populations of organisms. Recognizing the implications of an advance that could enable individual scientists to alter the shared environment, he and his colleagues chose to break with scientific tradition by revealing their findings and calling for open discussion and safeguards before building the first CRISPR-based gene drive system and demonstrating reversibility in the laboratory.